

रेफ्रिजरेशन और एयर कंडीशनिंग RAC (आरएसी) सर्विसिंग क्षेत्र में तकनीशियनों के लिए समाचार पत्र

अंक III

सितंबर 2024

विवरण...

प्रस्तावना

रुम एयर कंडीशनर की इंस्टॉलेशन और सर्विसिंग के लिए कॉपर (तांबे) की टयूब आधारित संचालन (करमजीत सिंह लधर, नेशनल वाइस प्रेसिडेंट, RASSS)

इन्वर्टर एसीः सर्विसिंग और रिपेयरिंग के दृष्टिकोण

आर्टिकलः HCFC के लिए वैकल्पिक रेफ्रिजरेंट और उनकी विशेषताएं (कपिल सिंघल, मैनेजिंग डायरेक्टर, बी पी रेफकूल, गुड़गांव)

फील्ड - इंटरव्यूः श्री संजय

संपादकीय टीम:

श्री आदित्य नारायण सिंह, डायरेक्टर, ओजोन सेल MoEFCC

प्रो. आर. एस. अग्रवाल, रिटायर प्रो., IIT दिल्ली

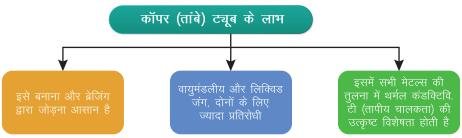
सुश्री एलिसा रिम, UNEP श्री सी. जे. मैथ्यू, RASSS

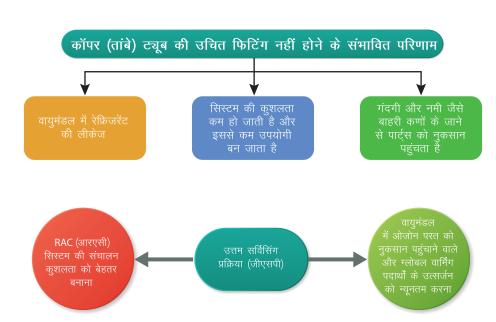
सुश्री स्मिता विचारे, GIZ-प्रोविलमा

सुश्री सुरुचि भड़वाल, डायरेक्टर, TERI

Ministry of Environment, Forest & Climate Change Government of India

THE ENERGY AND RESOURCES INSTITUTE Creating Innovative Solutions for a Sustainable Future


रूम एयर कंडीशनर की इंस्टॉलेशन और सर्विसिंग के लिए कॉपर (तांबे) ट्यूब आधारित संचालन


करमजीत सिंह लधर, नेशनल वाइस प्रेसिडेंट, आरएएसएसएस

रिफ्रिजरेशन और एयर कंडीशनिंग सिस्टम RAC (आरएसी) के लिए रिफ्रिजरेंट बहुत महत्वपूर्ण है। आधुनिक रेफ्रिजरेशन और एयर कंडीशनिंग इक्विपमेंट में, कॉपर (तांबे) (Cu) की ट्यूब RAC (आरएसी) सिस्टम में मुख्य रूप से रेफ्रिजरेंट के वाहक का काम करती है। पाइपिंग सिस्टम शीतलक को प्रवाह नली प्रदान करती है जो शीतलन और तापन प्रभाव को सक्षम बनाती है। इंजीनियर्स ने सावधानीपूर्वक कॉपर (तांबे) ट्यूब को इसलिए चुना है, क्योंकि बेस पाइपिंग मटीरियल के रूप में इससे कई लाभ मिलते हैं।

टेक्नीशियन को कॉपर (तांबे) ट्यूब के मेंटेनेंस और सर्विस के महत्व को समझना चाहिए। रेफ्रिजरेशन सिस्टम में, ट्यूब अलग—अलग पार्ट्स के बीच एक नली के रूप में काम करती है और रेफ्रिजरेंट को वायुमंडल में जाने से रोकती है, इसलिए साइजिंग, इंस्टॉलेशन लेआउट और फिटिंग को बहुत अच्छे से करना चाहिए।

RAC (आरएसी) सर्विसिंग टेक्नीशियन के लिए कॉपर (तांबे) ट्यूब आधारित संचालन की क्रमबद्ध जानकारी

संचालन

ट्युब का चयन

संचालन विवरण

- एसी सिस्टम के प्रकार और रेफ्रिजरेंट प्रेशर के अनुसार कॉपर (तांबे) का ग्रेड चुनें।
- रेफ्रिजरेशन और एयर कंडीशनिंग में K, L, ACR प्रकार के कॉपर (तांबे) ट्यूब का उपयोग किया जाता है।

सावधानियां

 निर्धारित कॉपर (तांबे) ट्यूब्स का उपयोग न करने पर सिस्टम सही से काम नहीं करेगा और इससे खतरा भी हो सकता है।

सीधा करना और मापना

- ट्यूब को एक छोर से दूसरे छोर तक सीधा करें।
- कॉइल को सीधा करने के लिए, एक हाथ से इसे सीधा रखें और दूसरे हाथ से दूसरे छोर को समतल जमीन पर स्थिर रखें।
- कॉपर (तांबे) ट्यूब्स को बहुत ज्यादा सीधा न करें, क्योंकि फिर बिना घुमाए इसे वापस मोड़ने में मुश्किल होती है।

ट्यूब काटना

- ट्यूब कटर का उपयोग करके ट्यूब को काटें।
- कटे हुए भागों की सतह खुरदरी या तिरछी नहीं होनी चाहिए। सतह चिकनी हो और ट्यूब की धुरी पर समकोण पर होनी चाहिए।
- इसे गंदा होने से बचाने के लिए, पर्याप्त लंबाई काटने के बाद कॉइल के अंत में प्लग या कैप लगाएं।
- ध्यान रखें कि कटे हुए छोरों को कोई नुकसान न पहुंचे।
- काटे गए हिस्से की सतह खुरदरी या तिरछी नहीं होनी चाहिए।
- ब्लेड पर ज्यादा प्रेशर न दें, क्योंकि इससे ट्यूब दब सकती है और सतह पर उभार निकल सकते हैं।
- मुलायम कॉपर (तांबे) ट्यूब को काटने के लिए हैकसॉ या किसी अन्य टूल का उपयोग न करें।

रीमिंग (डी-बर्रिंग)

- काटने के बाद ट्यूब के छोरों पर कुछ नुकीले उभार निकले होंगे, उन्हें हटा दें।
- इन उभारों को हटाने के लिए रीमिंग की जाती है।
- रीमर को ट्यूब के छोर पर रखें और धीरे-धीरे घुमाएं।
- बाहरी उभारों को हटाने के अलावा, रीमर की मदद से अंदरूनी उभारों को भी हटाएं।
- रीमिंग के दौरान, कॉपर (तांबे) के चिप्स या बर्र को ट्यूब में न जाने दें।
- रीमिंग करते समय, ट्यूब को उल्टा करके रखें या इस तरह कोण बनाकर रखें कि चिप्स जमीन पर गिरें।
- ट्यूब के अंदर कोई भी बर्र या उभार होने से उन्हें जोडने में मुश्किल होगी।

लीक टेस्टिंग

- लीकेज की टेस्टिंग के लिए, सिस्टम चालू होने या नाइट्रोजन के स्थिर प्रेशर के दौरान जॉइंट, कनेक्शन और फिटिंग पर साबुन का घोल डालें और बुलबुले के माध्यम से लीकेज वाले पॉइंट की पहचान करें।
- लीकंज का पता लगाने के लिए इलेक्ट्रॉनिक डिटेक्टर का भी उपयोग कर सकते हैं।
- जब सिस्टम में प्रेशर सही हो, तभी लीकेज की टेस्टिंग के लिए साबुन के घोल का उपयोग करें।
- ऐसे टूल्स का उपयोग करने के लिए, सिस्टम में रेफ्रिजरेंट की कम मात्रा का उपयोग करें, क्योंकि ज्यादातर लीकेज डिटेक्टर रेफ्रिजरेंट की मात्रा पर ही आधारित होते हैं।

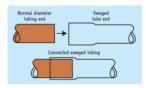
संचालन

ब्लेड करना

संचालन विवरण

- साफ, उचित तरीके से मोड़ने के लिए टेक्नीशियन को हमेशा स्प्रिंग या लीवर जैसे प्रकार का उपयोग करना चाहिए।
- इन टूल्स के साथ, टेक्नीशियन यह नियंत्रित कर सकते हैं कि कितना प्रेशर डाला जाए, जिससे किंकिंग को रोकने में मदद मिलती है।
- लीवर-टाइप ट्यूबिंग बेंडर्स का उपयोग करना आसान है और इसे सटीक तरीके से 180 डिग्री तक छोटी जगह पर मोड़ने के लिए एडजस्ट किया जा सकता है।

सावधानियां


- मोड़ते समय ट्यूब की पूरी सतह को गोल रखें।
- सही बेंडर साइज सुनिश्चित करें और मोड़ने के समय होने वाले नुकसान से बचने के लिए सावधानी से मोड़ें।
- अपने हाथ का कभी भी उपयोग न करें, क्योंकि इससे ट्यूब चपटी हो जाएगी।

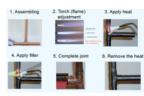
सफाई और पॉलिशिंग

- कॉपर (तांबे) ट्यूब को साफ करने के लिए हमेशा पॉलिश, एमरी क्लॉथ और वायर ब्रश जैसे घर्षणकारी या अपघर्षक का उपयोग करें।
- सतह को घर्षणकारी प्लास्टिक स्कोअरिंग पैड से साफ करें।
- केमिकल्स से अपने आपको बचाने के लिए दस्ताने और चेहरे पर मास्क पहनें।
- ध्यान रखें कि सफाई से निकला कोई भी कण या गंदा पदार्थ ट्यूब में न जाएं।
- अंदर की फिटिंग को साफ करते समय सही साइज के फिटिंग ब्रश का उपयोग करें।

स्वैगिंग (आकार बदलना)

- स्वैगिंग (आकार बदलने) के दौरान, कॉपर (तांबे)
 ट्यूब को एक छोर पर बड़ा किया जाता है तािक दूसरी ट्यूब के छोर को उसमें डाला जा सके।
- स्वैगिंग करने के लिए, एक बियरिंग ब्लॉक, हथौड़ा और उचित साइज के स्वैगिंग टूल की जरूरत होती है।
- फ्लेयरिंग ब्लॉक के ऊपर ट्यूब की स्थिति, ट्यूब के बाहरी व्यास (ओडी) +3 मिमी के बराबर होनी चाहिए।
- टेक्नीशियन को आकार बदलने के लिए केवल मुलायम कॉपर (तांबे) ट्यूब का उपयोग करना चाहिए।
- ट्यूब के लिए सही साइज का छेद चुनना बहुत जरूरी है।
- स्वेज किए जाने वाले दो कॉपर (तांबे) ट्यूब के ओवरलैप की लंबाई ट्यूबिंग के ओडी के बराबर होनी चाहिए।

फ्लेयरिंग



- फ्लेयर कनेक्शन से कॉपर (तांबे) ट्यूब को फ्लेयर टूल का उपयोग करके, प्रेशर के साथ जोड़ने या सील करने में मदद मिलती है।
- मुलायम कॉपर (तांबे) ट्यूब के छोर 45 डिग्री के कोण पर फ्लेयर होने चाहिए।
- ट्यूबिंग को फिटिंग से जोड़ने के लिए, फ्लेयर किए गए छोर को फिटिंग के मेल हिस्से के सामने बैठाएं।
- कॉपर (तांबे) ट्यूब के लिए कई प्रकार के फ्लेयरिंग टूल उपलब्ध हैं, जिनमें बार—टाइप टूल शामिल हैं जो विभिन्न पाइप और ट्यूब साइज के लिए कई बिट्स के साथ आते हैं।
- टेक्नीशियन को फ्लेयरिंग की प्रक्रिया पर बहुत
 ध्यान देना चाहिए। किसी भी गलत कनेक्शन से हाई प्रेशर वाला रेफ्रिजरेंट लीक हो जाएगा।
- इस संचालन से पहले फ्लेयर नट लगाना न भूलें, नहीं तो ट्यूब खराब हो जाएगी।
- टयूबिंग और पाइपिंग के लिए फ्लेयर्स को आपस में बदला नहीं जा सकता। पाइप फ्लेयर्स का कोण 37° होता है, जबिक टयूबिंग फ्लेयर्स का कोण 45° होता है।
- ध्यान रखें कि फ्लेयरिंग एरिया में कोई बारीक और छोटी दरार न हो। इससे लीकेज नहीं होगा।
- कॉपर (तांबे) ट्यूब को जोड़ने के लिए कभी भी टेफ्लॉन टेप का उपयोग न करें।

संचालन

ब्रेजिंग

संचालन विवरण

- ब्रेजिंग प्रक्रिया में ताप का इस्तेमाल किया जाता है और दो मेटल्स को एक अन्य फिलर मेटल से इस तरह जोड़ा जाता है कि वे अलग न हो सकें।
- ब्रेजिंग करने के लिए, टेक्नीशियन के पास निम्न होने चाहिए: – एक स्ट्राइकर, एयर–कंडीशनिंग सर्विस रिंच, ब्रेजिंग रॉड या फिलिंग के लिए मटीरियल, और एक एसिटिलीन–ऑक्सीजन सिलेंडर और टॉर्च।
- सिलंडर में ऑक्सीजन सामान्य रूप से @ 2200 psig होता है जब भरा होता है, जबिक एसिटिलीन @ 250 psig होता है। ब्रेजिंग के लिए 15 psig से कम प्रेशर की जरूरत होती है। इसके लिए, दो गेज सेट रेगुलेटर की सलाह दी जाती है। ऑक्सीजन के लिए, संचालन और नियंत्रण में आसानी के लिए टू स्टेज रेगुलेटर का उपयोग करें।
- दो ट्यूब्स के बीच की क्लीयरेंस 0.05 मिमी से 0.5 मिमी की सीमा में होनी चाहिए। समान साइज की ट्यूब्स के मामले में जॉइंट की लंबाई कम से कम ट्यूब्स के डायमीटर के बराबर होनी चाहिए।
- कॉपर (तांबे) ट्यूब की असेंबली को गर्म करके और फिर ऊपर फीलिंग मटीरियल (सिल्वर एलॉय ब्रेजिंग रॉड) की एक लेयर लगाकर ब्रेजिंग की जाती है।
- ब्रेजिंग करते समय, ब्रेज किए जाने वाले ट्यूब्स के साइज के अनुसार ही गर्म करने की जरूरत होती है, इसलिए गर्म करते समय ज्यादा सावधानी बरतने की जरूरत होती है।
- फिलर मटीरियल (रॉड) जोड़ने से पहले समान ताप को सुनिश्चित करने के लिए टॉर्च को चारों ओर घुमाकर, ट्यूब और फिटिंग दोनों पर समान रूप से ताप डालनी चाहिए।
- गर्म किए जाने वाले एरिया का रंग देखें। जब गर्म किया जाने वाला एरिया धीरे-धीरे लाल (चेरी लाल, पूरी तरह चमकीला लाल नहीं) रंग में बदल जाए, तो ट्यूब फिटिंग एरिया में रॉड की नोक को हल्के से ब्रश करके फिलर मटीरियल (रॉड) लगाएं।
- ब्रेजिंग के पिघलने और जमने और फिर भूरे-काले रंग (लगभग 10 से 15 सेकंड) का होने के बाद ताप को बंद कर देना चाहिए।

सावधानियां

- ध्यान रखें कि ब्रेजिंग हुआ तभी माना जाएगा, जब कॉपर (तांबे) ट्यूब को जोड़ने के लिए इस्तेमाल किए जाने वाले अलॉय को पिघलाने के लिए जरूरी तापमान 450°C से ऊपर है और अगर यह 450°C से कम है, तो इसे सोल्डरिंग माना जाएगा।
- ब्रेजिंग रॉड को गर्म कॉपर (तांबे) ट्यूब के संपर्क में आने पर पिघलना चाहिए और इसे कभी भी टॉर्च की फ्लेम से सीधे गर्म करके पिघलाना नहीं चाहिए।
- सबसे पहले और हर जगह सुरक्षा।
 ब्रेजिंग के दौरान, सुरक्षा के लिए
 विशेष रूप से डिजाइन किए गए
 चश्मे, जूते, कपड़े/लेब कोट और
 दस्ताने जैसे पीपीई पहनें।
- टेक्नीशियन को ब्रेजिंग जॉइंट को तब तक नहीं छूना चाहिए जब तक कि यह पूरी तरह से ठंडा न हो जाए।
- िकसी भी ऑक्सीडेशन से बचने के लिए, ट्यूब असेंबली सेक्टर के अंदर नाइट्रोजन गैस का उपयोग बहुत धीमी गति से करें।
- ब्रेजिंग के जॉइंट को अपने आप ठंडा होने दें।
- टेक्नीशियन को साफ और चमकदार सतह के लिए हमेशा वायर ब्रश का उपयोग करके जुड़ने वाली सतहों को साफ करें।
- यह भी ध्यान रखें कि कॉपर (तांबे)
 ट्यूब ज्यादा गर्म न हो जाए।

प्रेशर टेस्टिंग

- जब सभी ट्यूब कनेक्ट हो जाती हैं और ब्रेज पूरी हो जाती हैं, तो लीकेज टेस्टिंग के लिए प्रेशर टेस्टिंग प्रोसीजर शुरू करें।
- प्रेशर की टेस्टिंग ऑक्सीजन—फ्री ड्राई नाइट्रोजन (ओएफडीएन) के साथ की जाती है और इसके लिए सिस्टम पर परिचालन प्रेशर से अधिक प्रेशर दिया जाता है
- नाइट्रोजन सिलेंडर में 2200 psig पर प्रेशर होता है। टेक्नीशियन को एयर—कंडीशनर पर प्रेशर डालने से पहले इस प्रेशर को 200-400 psig पर लाने के लिए नाइट्रोजन रेगुलेटर का उपयोग करना चाहिए। ऐसा न करने पर सिस्टम में विस्फोट हो सकता है।
- कम से कम 15 मिनट तक प्रेशर बनाए रखकर सिस्टम की जांच करें और पक्का करें सिस्टम में कोई लीकेज न हो।
 प्रेशर में कमी जैसे किसी भी बदलाव के लिए प्रेशर गेज पर नजर रखें।

- टेक्नीशियन नाइट्रोजन सिलेंडर पर दो नाइट्रोजन रेग्लेटर का उपयोग करें।
- ध्यान रखें कि नाइट्रोजन सिलेंडर और ऑक्सीजन सिलेंडर का प्रेशर समान होता है, इसलिए मिक्सिंग से बचने के लिए दोनों सिलेंडर को उचित स्थान पर रखें।
- ध्यान रखें कि प्रेशर टेस्टिंग के लिए नाइट्रोजन सिलेंडर का उपयोग करें, न कि ऑक्सीजन सिलेंडर का उपयोग करें।
- सिस्टम में इतना अधिक प्रेशर नहीं देना चाहिए कि निर्धारित टेस्टिंग प्रेशर से अधिक हो जाए।
- ओएफडीएन प्रेशर पड़ने पर सिस्टम को कभी भी चालू नहीं करना चाहिए।

इन्वर्टर एसीः सर्विसिंग और रिपेयरिंग के

महत्वपूर्ण दृष्टिकोण

गर्मियों का मौसम शुरू होने वाला है। तेजी से बढ़ते शहरीकरण और जनसंख्या में वृद्धि के साथ, लगातार एयर कंडीशनर का उपयोग बढ़ने की उम्मीद है। आज के समय में कंज्यूमर टेक्नोलॉजी के बारे में अधिक जागरूक हो रहे हैं, जिससे घरेलू एसी मार्केट सेगमेंट में इन्वर्टर एसी की बिक्री में तेजी आएगी। इन्वर्टर टेक्नोलॉजी वाले एयर कंडीशनर, मोटर को चालू और बंद करने के बजाय मोटर की स्पीड को बदलकर तापमान को सही रखते हैं। इन्वर्टर एयर कंडीशनर के साथ, बिजली की कम खपत होती है, मतलब बिजली की बचत होती है, इसलिए न केवल उपभोकताओं के बिजली बिल कम होते हैं, बल्कि पर्यावरण को स्वस्थ बनाने में भी मदद मिलती है।

फिक्स्ड स्पीड एसी और इन्वर्टर एसी में अंतर

इसके मुख्य अंतर को समझने के लिए इन्वर्टर टेक्नोलॉजी को कार के एक्सीलेटर की तरह समझें। गाड़ी चलाते समय स्पीड बढ़ाने के लिए हमें एक्सीलेटर पैडल दबाना होता है, ठीक इसी प्रकार इनवर्टर एसी वेरिएबल, स्पीड कम्प्रेसर, रूम तापमान और आने वाली हवा और थर्मीस्टेट में निर्धारित लेवल जैसी स्थितियों के आधार पर कम या अधिक शक्ति खींचते हैं। इन्वर्टर वास्तव में एक इलेक्ट्रॉनिक पावर पार्ट है जो इलेक्ट्रिक मोटर की इलेक्ट्रिक सप्लाई फ्रीक्वेंसी को लगातार एडजस्ट करता है।

तालिका नं. 1 इन्वर्टर एसी और फिक्स्ड स्पीड (नॉन-इन्वर्टर) एसी में मुख्य अंतर

मापदंड	फिक्स्ड स्पीड एसी / नॉन–इन्वर्टर एसी	इन्वर्टर एसी		
टेक्नोलॉजी	फिक्स्ड स्पीड कंप्रेसर	वेरिएबल स्पीड कंप्रेसर		
बिजली की खपत	अधिक	कम		
ध्वनि का स्तर	अधिक, बार–बार चालू / बंद होने के कारण	कम, सुचारू संचालन के कारण		
तापीय आराम	बार—बार चालू / बंद होने के कारण कम।	अधिक, सुचारू रूप से बाधित संचालन के कारण		
शीतलन क्षमता	एक समान	शीतलन भार के अनुसार अलग–अलग होता है		
उपयोग के लिए सुझाव	खरीदें, निम्न स्थिति में: • सामान्य दैनिक उपयोग के लिए	खरीदें, निम्न स्थिति में: अधिक दैनिक उपयोग के लिए बेहतर परफॉर्मेंस के लिए कम बजट के लिए बिजली बिल में कमी के लिए		

फिक्स्ड स्पीड और इन्वर्टर एसी यूनिट की संरचना में मुख्य अंतर नीचे दर्ज हैं:

मापदंड	फिक्स्ड स्पीड	इन्वर्टर
कंप्रेसर	फिक्स्ड स्पीड कंप्रेसर	वेरिएबल स्पीड कंप्रेसर
कंट्रोलर	कोई PCB / कंट्रोलर नहीं है	विशेष रूप से डिजाइन किया गया आउटडोर PCB
मोटर	एसी मोटर	एसीध्डीसी फैन मोटर
संचार	एक तरफा संचार	दो-तरफा संचार

इन्वर्टर एसी में मेन इलेक्ट्रिकल पार्ट

वायरिंग

- 1. इनडोर और आउटडोर यूनिट 4-कोर वायर से जुड़ी होती है।
- 2. इन्वर्टर यूनिट के मामले में, इनडोर और आउटडोर यूनिट के बीच संचार सिग्नल वायर के माध्यम से होता है।
- 3. इसलिए जरूरी है कि सिग्नल वायर में कोई जॉइंट न हो। ढीले जॉइंट से संचार में समस्या हो सकती है।
- 4. इन्वर्टर एसी में अलग—अलग रंग के कोड वाले वायर का इस्तेमाल करना चाहिए और एक ही रंग के वायर का इस्तेमाल नहीं करना चाहिए।

अर्थिंग

- 1. इन्वर्टर एयर कंडीशनर के आसान संचालन के लिए अर्थिंग बहुत महत्वपूर्ण है।
- 2. सुनिश्चित करें कि साइट पर उचित अर्थिंग की व्यवस्था हो और साथ ही IDU और ODU, दोनों में उचित अर्थिंग की गई हो।
- 3. न्यूट्रल और अर्थ के बीच वोल्टेज 2V से कम होना चाहिए।

आसटडोर PCB कंटोलर

- 1. आउटडोर यूनिट कंट्रोलर के अंदर अधिक क्षमता वाले इलेक्ट्रोलाइटिक कैंपेसिटर का उपयोग किया जाता है। एयर कंडीशनर के लिए इस कैंपेसिटर में पोलरिटी टर्मिनल + या — चिह्नों का उपयोग किया जाता है।
- 2. बिजली बंद होने के बाद चार्ज खत्म होने (चार्जिंग वोल्टेज डीसी 310 V) में एक निश्चित समय लगता है।
- 3. अगर आउटडोर कंट्रोल सर्किट बोर्ड सामान्य है, तो चार्ज खत्म होने में लगभग 180 सेकंड लगेंगे।
- 4. अगर आउटडोर कंट्रोल सर्किट बोर्ड में खराबी दिखती है, तो चार्ज खत्म होने में कम से कम 30 मिनट लगेंगे।

आउटडोर PCR में थर्मल पेस्ट का उपयोग

- 1. ध्यान रखें कि आउटडोर PCB (प्रिंटेड सर्किट बोर्ड) को बदलते समय थर्मल पेस्ट लगाया गया हो।
- 2. आउटडोर PCB पर लगा थर्मल पेस्ट, आईपीएम (इंटेलिजेंट पावर मॉड्यूल) और आईजीबीटी (इंसुलेटेड–गेट बाइपोलर ट्रांजिस्टर) से निकलने वाली गर्मी को एक समान रूप से बाहर निकालता है और इस प्रकार आईपीएम तापमान को बनाए रखता है।
- 3. आईपीएम मॉड्यूल इन्वर्टर एसी मॉड्यूल है जो कंप्रेसर और आउटडोर फैन की स्पीड को नियंत्रित करता है और इससे ही बिजली की कम खपत होती है।

इन्वर्टर एसी में संचार सिग्नल की समस्या की पहचान कैसे करें:

संचार सिग्नल की समस्या

- 1. इनडोर कंट्रोलर यूनिट, हर आधे सेकंड में आउटडोर कंट्रोलर को सिग्नल भेजती है
- 2. सही डेटा मिलने के बाद आउटडोर यूनिट इनडोर को जवाब देती है। इनडोर और आउटडोर यूनिट के बीच सिग्नल भेजने में समस्या होने पर संचार में समस्या होने लगती है।
- 3. इससे डिस्प्ले पैनल पर एरर कोड दिखाई देता है। कोड एसी के ब्रांड के आधार पर अलग—अलग होता है, इसलिए टेक्नीशियन को सर्विसिंग के लिए आगे बढ़ने से पहले सर्विस मैनुअल को देखना चाहिए।

संचार सिग्नल में समस्या की पहचान

- 1. आउटडोर यूनिट के पोर्ट 2 और पोर्ट 3 के बीच डीसी वोल्टेज की टेस्टिंग करने के लिए हमेशा मल्टीमीटर का उपयोग करें।
- 2. मल्टीमीटर का लाल पिन पोर्ट 2 से जुड़ता है जबिक काला पिन पोर्ट 3 के लिए है।
- 3. जब एसी सामान्य चालू स्थिति में होता है, तो वोल्टेज -25V से 25V (यह वोल्टेज अलग–अलग मॉडल में अलग–अलग हो सकता है) के बीच रहेगा।
- 4. आउटडोर यूनिट में खराबी होने पर वोल्टेज सकारात्मक और नकारात्मक रूप से आगे—पीछे होगा। लेकिन इनडोर यूनिट में खराबी होने पर वोल्टेज एक निश्चित वैल्यू पर स्थिर रहेगा।

तापमान सेंसर कार्यक्षमता की जांच और आउटडोर PCB आईपीएम की निरंतरता की जांच कैसे करें:

तापमान सेंसर की कार्यक्षमता की जांच 1. टेक्नीशियन को पहले यह सुनिश्चित करना चाहिए कि तापमान सेंसर PCB से डिस्कनेक्ट हो गया है। 2. मल्टीमीटर का उपयोग करके, टेक्नीशियन को निम्न के रेजिस्टेंस वैल्यू को मापना चाहिएरू

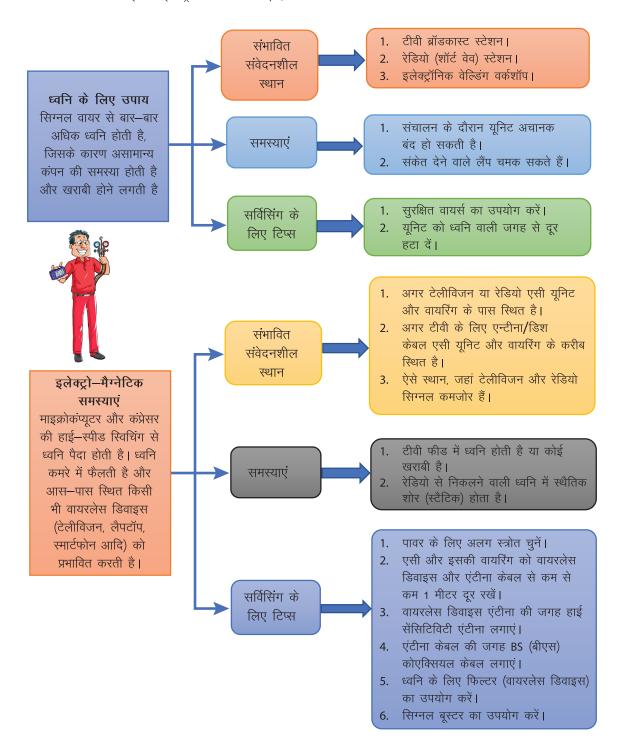
कमरे का तापमान सेंसर (T1) इनडोर कॉइल तापमान (T2) आउटडोर कॉइल तापमान (T3)

आउटडोर एंबिएंट तापमान (T4) कंप्रेसर डिस्चार्ज तापमान (Tp) सेंसर

- 3. मल्टीमीटर का उपयोग करके हर वाइंडिंग के रेजिस्टेंस वैल्यू को मापें।
- 4. टेक्नीशियन को इसके लिए एसी से संबंधित सर्विस मैनुअल में तापमान सेंसर रेजिस्टेंस वैल्यू वाली तालिका को देखना चाहिए।
- 5. खराब तापमान सेंसर के कारण एसी के संचालन चक्र अनियमित हो सकते हैं।

आउटडोर PCB आईपीएम निरंतरता की जांच

- 1. बिजली बंद करें, और 15 मिनट तक का इंतजार करें, ताकि आउटडोर PCB में बड़ी क्षमता वाले इलेक्ट्रोलाइटिक कैपेसिटर पूरी तरह से डिस्चार्ज हो जाएं, ताकि कोई झटका न लगे।
- 2. आईपीएम को उतारें।
- तालिका नं. 1 में दिखाए गए अनुसार P और UVWN; UVW और N के बीच रेजिस्टेंस को मापने के लिए एक डिजिटल टेस्टर का उपयोग करें।


तालिका नं. 1: डिजिटल टेस्टर सामान्य रेजिस्टेंस वैल्यू

डिजिटल	टेस्टर	सामान्य रेजिस्टेंस वैल्यू	डिजिटल	टेस्टर	सामान्य रेजिस्टेंस वैल्यू
(+) लाल	(-) काला		(+) लाल	(-) काला	
	N	∞	U		∞
Р	U	(M Ω में बहुत	٧	N	(M Ω में बहुत अधिक वैल्यू)
P	V	अधिक वैल्यू)	W	IN	अधिक वैल्यू)
	W		(+) लाल		

बाहरी कारक और इन्वर्टर एसी

इन्वर्टर एसी अपनी शीतलन और तापन क्षमताओं में बदलाव लाने के लिए, पल्स—विथ मॉडुलेशन (पीडब्लूएम) और हाई फ्रीक्वेंसी कंट्रोल सिग्नल के माध्यम से कंप्रेसर की स्पीड को नियंत्रित करके काम करता है। इसके कारण, बाहरी चीजों के लिए ध्वनि पैदा हो सकती है और इससे आस—पास के वायरलेस डिवाइस में इलेक्ट्रोमैंग्नेटिक समस्याएं होने की

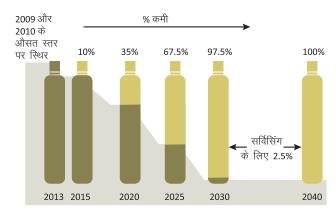
संभावना है। इन्वर्टर एसी में नॉइज फिल्टर का उपयोग करके इस समस्या को कम किया जाता है। हालांकि, इंस्टॉलेशन के स्थान और स्थिति के आधार पर कुछ बाहरी तत्वों के कारण भी इन्वर्टर एसी के सामान्य संचालन साइकल में समस्याएं पैदा हो सकती हैं।

HCFC(एचसीएफसी) के वैकल्पिक रेफ्रिजरेंट और उनकी विशेषताएं

किपल सिंघल, प्रबंध निदेशक, बीपी रेफकूल, गुड़गांव

- भारत 19 जून, 1992 को मॉन्ट्रियल प्रोटोकॉल का समर्थक बना।
- विभिन्न हितधारकों, उद्योग के निरंतर प्रयासों और पर्यावरण, वन और जलवायु परिवर्तन मंत्रालय (MOEF & CC) द्वारा विकसित नीतियों के साथ, भारत ने 1 जनवरी, 2010 को CFCs, CTC और हैलॉन और मिथाइल क्लोरोफॉर्म के उत्पादन और खपत को सफलतापूर्वक चरणबद्ध तरीके से समाप्त कर दिया है।
- HCFC को कुछ एप्लीकेशन में हाई—ODP (ओडीपी) सीएफसी के स्थान पर उपयोग करने के लिए लो—ODP (ओडीपी) ट्रांजिशनल सब्स्टांसेस के रूप में विकसित किया गया।
- मॉन्ट्रियल प्रोटोकॉल की 20वीं वर्षगांठ के अवसर पर सितम्बर 2007 में आयोजित पक्षों की 19वीं बैठक (MOP) में ओजोन परत में तुरंत सुधार करने के प्रयासों के तहत हाइड्रोक्लोरोफ्लोरोकार्बन (HCFC) की चरणबद्ध समाप्ति को 10 वर्ष तक बढ़ाने पर सहमति व्यक्त की गई।

एचसीएफसी के विकल्पों का मूल्यांकन


आमतौर पर भारत में दो प्रकार के रेफ्रिजरेंट उपयोग किए जाते हैं: HCFC-22 और HCFC-123। इनका उपयोग विभिन्न उद्देश्यों के लिए किया जाता है, जिसमें एयर कंडीशनिंग, रेफ्रिजरेशन और चिलर शामिल हैं। इनके लिए कुछ विशिष्ट जरूरतें होती हैं जिन्हें सभी अनुप्रयोगों को एक ही विकल्प द्वारा पूरा नहीं किया जा सकता है। हर अनुप्रयोगों के लिए एक अलग समाधान की जरूरत होती है, जो किसी व्यक्ति के अनुकूल हो सकता है और नहीं भी हो सकता है।

वैकल्पिक रेफ्रिजरेंट के लिए मुख्य मूल्यांकन मानदंड होंगे:

- पर्यावरणीय संबंधी विशिष्टताएं
- स्रक्षा विशिष्टताएं
- ऊष्मागतिकीय गुणों में उस प्रणाली की ऊर्जा क्षमता भी शामिल होती है।

पर्यावरणीय संबंधी विशिष्टताएं

रेफ्रिजरेंट के दो सबसे महत्वपूर्ण पर्यावरणीय गुण, ओजोन क्षरण और ग्लोबल वार्मिंग पर उनका प्रभाव है। ओजोन क्षय क्षमता (ODP) किसी पदार्थ के ओजोन परत पर प्रभाव को मापने का एक पैमाना है, जबिक वैश्विक तापन क्षमता (GWP) किसी विशेष रेफ्रिजरेंट द्वारा वैश्विक तापन पर पड़ने वाले प्रभाव को दर्शाती है।

फोटो 1 विकासशील देशों के लिए मॉन्ट्रियल (एक्सीलेरेटेड) चरणबद्ध कार्यक्रम

- प्रत्यक्ष उत्सर्जन तब होता है जब रेफ्रिजरेंट लीक होकर बाहर निकलता है जैसे पाइपों या उपकरणों से सामान्य संचालन के दौरान या नियमित सर्विसिंग के समय।
- परोक्ष उत्सर्जन उस ऊर्जा की खपत से होता है जो उपकरण के संचालन में होती है।

सुरक्षा विशिष्टताएं

रेफ्रिजरेंट्स की विषाक्तता और ज्वलनशीलता के दो महत्वपूर्ण सुरक्षा गुण हैं। ASHRAE 34 और भारतीय मानक IS16656 के अनुसार, रेफ्रिजरेंट्स के सुरक्षा वर्गीकरण निम्न है:

विषाक्तता के लिए अल्फा संख्या "A" और "B" और ज्वलनशीलता के लिए संख्या 1, 2, 2L, और 3 है:

- विषाक्तता का वर्गीकरण क्रोनिक (लंबे समय) प्रभाव पर इस प्रकार आधारित है:
 - a. क्लास A, जिसमें OEL >= 400 ppm है
 - b. क्लास B, जिसमें OEL < 400 ppm है

यहां OEL (व्यावसायिक जोखिम सीमा) का मतलब 8 घंटे के समय पर आधारित औसत (TWA) सान्द्रण है, जिसके संपर्क में लगभग सभी श्रमिक बिना किसी प्रतिकूल प्रभाव के सामान्य 8 घंटे के कार्यदिवस और 40 घंटे के कार्य सप्ताह के लिए बार—बार आ सकते है।

- ज्वलनशीलता वर्गीकरण फ्लेम (ज्वाला) के निकलने पर आधारित है:
 - a. क्लास 1 इसका मतलब है कि कोई फ्लेम नहीं होती है
 - b. क्लास 2L 60°C और 101.3 kPa पर टेस्टिंग करने पर फ्लेम के प्रसार को दिखाता है, LFL > 0.10 kg/m3 और

- 23 °C और 101.3 kPa पर दहन की गति वेग <= 10 cm/s, और दहन की ऊष्मा < 19 MJ/kg है
- c. क्लास 2 60°C और 101.3 kPa पर टेस्टिंग करने पर फ्लेम के प्रसार को दिखाता है है, 23°C पर LFL > 0.10 kg/m3 और 101.3 kPa, और दहन की ऊष्मा < 19 MJ/kg है
- d. क्लास 3 60°C और 101.3 kPa पर टेस्टिंग किए जाने पर फ्लेम के प्रसार को दिखाता है, LFL <= 0.10 kg/m3 या दहन की ऊष्मा >= 19 MJ/kg है

जहां LFL निचली ज्वलनशीलता की सीमा है।

ऊष्मागतिक विशिष्टता

किसी विशिष्टता के साथ रेफ्रिजरेंट को चुनते समय ऊष्मागतिक विशिष्टता महत्वपूर्ण होती है। यह महत्वपूर्ण है कि आप विशिष्टता के लिए उचित रेफ्रिजरेंट चुनें। हमें अधिक कूलिंग क्षमता, कंप्रेसर ऑयल के साथ अनुकूलता, हाई क्रिटिकल तापमान और कम डिस्चार्ज तापमान वाले रेफ्रिजरेंट को चुनना चाहिए। अगर हम गलत रेफ्रिजरेंट को चुनते हैं, तो

ASHRAE वर्गीकरण

		_
उच्च ज्वलनशीलता	A3	В3
ज्वलनशील	A2	B2
कम ज्वलनशीलता	A2L	B2L
कोई ज्वलनशीलता नहीं	A1	B1
	कम विषाक्तता	उच्च विषाक्तता

हम एक ऐसी प्रणाली विकसित कर सकते हैं जो बहुत महंगी, बहुत बड़ी हो, या बहुत लंबे समय तक न चले। प्रमुख ऊष्मागतिकी विशिष्टताओं की जानकारी निम्न तालिका नं. 2 में की गई है।

तालिका नं. 2: रेफ्रिजरेंट्स की ऊष्मागतिक विशिष्टता

वर्तमान में उपयोग किए	सेक्टर	विकल्प	GWP	सुरक्षा संबंधी	ऊष्मागतिक	ज्विशिष्टता विशिष्टता	टिप्पणियां
जाने वाले रेफ्रिजरेंट				वर्गीकरण	बॉयलिंग पॉइंट (महत्वपूर्ण तापमान (
HCFC-22	रूम एयर कंडीशनर	R290	3	A3	-42.100	96.700	ज्वलनशील और कुछ छोटे चार्ज सिस्टम में पहले से ही उपयोग किए जाते हैं।
	रूम एयर कंडीशनर (मिनी—स्प्लिट और विंडो एयर कंडीशनर)	R32	677	A2L	-51.700	78.100	हल्के ज्वलनशील और भारत में रूम एसी में व्यापक रूप से उपयोग किए जाते हैं।
HCFC-22	कमर्शियल रेफ्रिजरेशन	R290	3	A3	-42.100	96.700	ज्वलनशील और कुछ छोटे चार्ज सिस्टम में पहले से ही उपयोग किए जाते हैं।
	सेल्फ-कंटेंड यूनिट (डिस्प्ले कैबिनेट, वाटर कूलर, बोतल कूलर, विजी कूलर, आइसक्रीम कैबिनेट और चेस्ट फ्रीजर)	R448A	1273	A1	1.153	83.600	उच्च लागत और कम उपलब्धता के कारण भारत में इसका उपयोग बहुत सीमित है।
		R454A	238	A2L	1.163	78.900	उच्च लागत और कम उपलब्धता के कारण भारत में इसका उपयोग बहुत सीमित है।
		R 404A	3943	A1	1.015	72.100	उच्च GWP चिंता का विषय है। इसका इस्तेमाल फिलहाल हो रहा है, लेकिन यह अस्थायी समाधान है।
HCFC-22	मध्यम क्षमता वाले चिलर	R 410A	1924	A1	-51.400	71.400	उच्च GWP चिंता का विषय है। इसका इस्तेमाल फिलहाल हो रहा है, लेकिन यह अस्थायी समाधान है।
	मल्टी–स्प्लिट, VRF एसी, डक्टेड, पैकेज्ड, रूफ टॉप	R-410A	1624	A1	1.191	86.000	कम क्षमता और अधिक ग्लाइड एक चिंता का विषय है।
HCFC-22	इंडस्ट्रियल और कमर्शियल रेफ्रिजरेशन	R-448A	1273	A1	1.153	83.600	उच्च GWP चिंता का विषय है। इसका इस्तेमाल फिलहाल हो रहा है, लेकिन यह अस्थायी समाधान है।
		R-407F	1674	A1	1.161	82.600	कम क्षमता और अधिक ग्लाइड एक चिंता का विषय है।
		R 404A	3943	A1	1.015	72.100	उच्च GWP चिंता का विषय है। इसका इस्तेमाल फिलहाल हो रहा है, लेकिन यह अस्थायी समाधान है।
HCFC-22	चिलर	R 410A	1924	A1	-51.400	71.400	उच्च GWP चिंता का विषय है। इसका इस्तेमाल फिलहाल हो रहा है, लेकिन यह अस्थायी समाधान है।
	स्क्रॉल	R 407C	1624	A1	1.191	86.000	कम क्षमता और अधिक ग्लाइड एक चिंता का विषय है।
HCFC 123	सेंट्रीफ्यूगल	HFC 514A	2	B1	37.850	178.100	उच्च लागत और कम उपलब्धता के कारण भारत में इसका उपयोग बहुत सीमित है।
		HCF0 1233zd	1	A1	18.300	165.600	उच्च लागत और कम उपलब्धता के कारण भारत में इसका उपयोग बहुत सीमित है।

संजय, दिल्ली में एक रेजिडेंशियल और कमर्शियल RAC (आरएसी) टेक्नीशियन के रूप में काम करते हैं। 2022 में, श्री संजय ने GIZ द्वारा आयोजित एक ट्रेनिंग प्रोग्राम में भाग लिया और ट्रेनिंग में महत्वपूर्ण जानकारी और कौशल प्राप्त किया। न्यूजट्रैक के साथ एक इंटरव्यू के दौरान, उन्होंने अपने काम के अनुभवों, नौकरी के कर्तव्यों, चुनौतियों और नौकरी की संतृष्टि पर बात की।

फील्ड सें: संजय दिल्ली में एक आवासीय और वाणिज्यिक RAC (आरएसी) तकनीशियन के रूप में काम करते हैं।

आपकी नौकरी में क्या करते हैं?

चैतरः आईटीआई और 12वीं की पढ़ाई पूरी करने के बाद, मैं दिल्ली में फुल टाइम रेजिडेंशियल RAC (आरएसी) टेक्नीशियन के रूप में काम कर रहा हूं। मैं अधिकृत ओईएम के साथ काम करता हूं। मैं पूरे साल स्प्लिट एसी, विंडो एसी, रेक्रिजरेटर और एयर प्युरीफायर की सर्विस करता हूं।

आप अपनी नौकरी में किस तरह के रेफ्रिजरेंट क इस्तेमाल करते हैं?

उत्तरः सर्विसिंग के दौरान ज्यादातर रेफ्रिजरेंट R-32 और R-410A इस्तेमाल करता हूं। हैंडलिंग के दौरान सुरक्षा संबंधी दिशानिर्देशों का पालन करता हूं और जोखिम से बचता हूं, जैसे सर्विसिंग से पहले कमरे को हवादार बनाता हूं, कमरे में उपलब्ध आग लगने वाली चीजों को बाहर निकालता हूं, सही टूल्स का उपयोग करता हूं आदि।

क्या आपने कोई प्रोफेशनल ट्रेनिंग लिया है, जैसे कि ITI, GIZ, ISHRAE या स्किल इंडिया? क्या आप इन ट्रेनिंग प्रोग्राम्स के बारे में जानते हैं?

उत्तरः मैंने रेफ्रिजरेशन और एयर कंडीशनिंग में आईटीआई किया है। 2022 में, मैंने GIZ द्वारा आयोजित 'रेफ्रिजरेशन और एयर कंडीशनिंग में बेहतर सेवा प्रथाओं' पर प्रशिक्षण कार्यक्रम में भी भाग लिया था।

सर्विसिंग जॉब के लिए आप किस तरह के टल रखते हैं?

उत्तरः मैं रेफ्रिजरेटर और एयर कंडीशनर की सर्विसिंग के लिए कई तरह के टूल रखता हूं। मैं वैक्यूम पंप, ट्यूब कटर, रेफ्रिजरेंट रिकवरी सिलेंडर, प्रेशर गेज, धर्मामीटर जैसे RAC (आरएसी) टूल और हैंड टूल्स, जैसे रिंच, प्लायर, ट्यूब कटर और स्क्रूड्राइवर का इस्तेमाल करता हं।

इस बिजनेस को बनाए रखने के लिए किस तरह की सरकारी पहल की जरूरत है?

उत्तरः मुझे लगता है कि सरकार को ट्रेनिंग के बुनियादी ढांचे को मजबूत करना चाहिए और विस्तार करना चाहिए, जिससे भारत में RAC (आरएसी) सेक्टर में उभरती नई टेक्नोलॉजी और चुनौतियों से निपटने के लिए इच्छुक RAC (आरएसी) टेक्नीशियन को बेहतर तरीके से तैयार होने में मदद मिलेगी।

क्या आप RAC (आरएसी) टेक्नीशियन के रूप में अपने कौशल को बढ़ाने के लिए ट्रेनिंग प्रोग्राम्स में भाग लेने में रुचि रखते हैं?

उत्तरः हां, मैं नई तकनीकें, लेटेस्ट रेफ्रिजरेंट की जानकारी लेता हूं और उसकी सर्विसिंग के तरीके जैसी नई चीजें सीखना चाहता हूं, ताकि कस्टमर को बेहतर सेवा दे सकूं।

उत्तम सर्विसिंग प्रक्रिया के लिए तैयार रेफरेंस वीडियो

मुख्य टूल्स की जानकारी

एयर कंडीशनर की निकासी

फ्लेयरिंग

लीकेज का पता लगाना

रेफ्रिजरेंट चार्जिंग

उत्तम सर्विसिंग प्रक्रिया के बारे में अधिक जानने और सीखने के लिए यहां स्कैन करेंरू

अधिक जानकारी के लिए

ओजोन सेल, पर्यावरण, वन एवं जलवायु परिवर्तन मंत्रालय

1st Floor, 9 Institutional Area, Lodhi Road, New Delhi - 110003 फोन नंबर: 011-24642176 फैक्स: 011-24642175

वेबसाइटः http://ozonecell.nic.in/

ईमेल: pmucfc-mef@nic.in दिवटर: https://twitter.com/OMoefcc यूट्यूब: https://www.youtube.com/channel/ UC82wIRSvgzUEzOys5SZWrpgg

अधिक जानकारी के लिए शौर्य आनंद | सुनील कुमार TERI, Darbari Seth Block, IHC Lodhi Road, New Delhi-110 003

टेलीफोनः 011-24682100; फैक्सः 011-41504900

ईमेलः shaurya.anand@teri.res.in; sunil.sansaniwal@teri.res.in

वेबसाइटः www.teriin.org